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The interaction of the superconducting condensate with deformations of the crystal lattice is formulated
assuming the electrostatic potential to be of Bernoulli type and the effect of strain on material parameters. In
the isotropic approximation it is shown that within the Ginzburg-Landau theory both contributions can be
recast into the local but nonlinear interaction term of the free energy.
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I. INTRODUCTION

When cooled, metals reduce their volume. At the transi-
tion from normal to superconducting state, the coefficient of
the thermal expansion makes a jump. In most cases, the su-
perconducting systems reduce their volume less than the nor-
mal ones. Consequently, inhomogeneities of the supercon-
ducting phase cause stresses which are similar to stresses
caused by the inhomogeneities due to the temperature.

Since the superconducting condensate affects the specific
volume, deformations of the crystal lattice also affect the
condensate. Mechanisms of this interaction between the
crystal lattice and the condensate can be outlined within the
simplest two-fluid free energy of Gorter and Casimir, fGC=
− 1

4�Tc
2�− 1

2�T2�1−�, where � is the superconducting frac-
tion, � is the linear coefficient of the specific heat per unit
volume known as the Sommerfeld �, and Tc is the critical
temperature.

Material parameters � and Tc are not constants. They de-
pend on the electron density n and the deformation of the
crystal lattice, which we describe by the lattice density nlat.
Due to the dependencies ��n ,nlat� and Tc�n ,nlat� the crystal
lattice interacts with the superconducting condensate.

In literature on deformable superconductors one finds two
models of the lattice-condensate �lc� interaction. First, there
are various phenomenological theories1–6 which assume that
the density of electrons exactly follows the density of the
lattice, n=nlat. The perturbation of material parameters due to
the deformation, e.g., ��= ��� /�n��n+ ��� /�nlat��nlat, then
can be expressed via the lattice density, ��= ���� /�n�
+ ��� /�nlat���nlat. The strength of the lc interaction, thus, de-
pends on the sum of both density derivatives, ��� /�n�
+ ��� /�nlat� and ��Tc /�n�+ ��Tc /�nlat�.

Second, a model in which the lc interaction is mediated
by the electrostatic potential has been discussed.7,8 Since the
theory of the electrostatic potential has been developed under
the approximation of a stiff lattice, the lc interaction obtained
within this model depends exclusively on the derivatives
with respect to the electron density, �� /�n and �Tc /�n.

The phenomenological approach is more general being
applicable to all materials, while the electrostatic approach is

limited to cases in which the dependence on the electron
density dominates. On the other hand, the electrostatic ap-
proach offers a natural picture of the surface, in particular,
one can easily see that the electrostatic field of the surface
dipole contributes to the forces deforming the crystal lattice.9

Studies within the phenomenological approach have not no-
ticed the surface tension.

In this paper we derive a phenomenological theory which
unifies both approaches. To this end it is necessary to take
into account the charge of a deformed lattice in the electro-
static potential and to allow for lc interaction which is not
covered by the �mean� electrostatic potential. To avoid
lengthy formulas or nontransparent tensor notation with nu-
merous indices, we restrict our attention to the interaction
between the lattice compression and the condensate. We ne-
glect the interaction between the condensate anisotropy and
shear deformations of the lattice. Interaction of the supercon-
ducting condensate with a deformation which can be inter-
preted as a mutual displacement of sublattices has been dis-
cussed in Ref. 10.

A. Origin of two mechanisms

There are various microscopic mechanisms due to which
material parameters of the superconductor depend either on
the density of electrons or on the deformation of the crystal
lattice. Although our discussion is independent of actual mi-
croscopic mechanisms, we find it profitable to outline some
of these possibilities so that the need to treat perturbations of
the electron density and the lattice density independently be-
comes more apparent.

The Sommerfeld � is proportional to the single-spin den-
sity of states N0 at the Fermi energy, �= 2

3�2kB
2N0. The den-

sity of states naturally depends on the value of the Fermi
energy, which itself depends on the electron density. In this
way the Sommerfeld � depends on the electron density.

The density of states also reflects the electron band struc-
ture. For example, the saddle points giving a high density of
states are quite sensitive to atomic spacing. Moreover, in
ionic crystals of high-Tc superconductors the charge transfer
between sublattices depends on the lattice deformation. The
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Sommerfeld � thus depends on the lattice deformation via
mechanisms which are distinct from changes in the electron
density.

The critical temperature is an even more complex quan-
tity. For simplicity we express it within the BCS approxima-
tion Tc=0.85�D exp�−1 /N0V�. Apparently, Tc depends on
the electron density and the deformation via the density of
states. Besides this, there are additional contributions via the
interaction potential V and the Debye temperature �D. For
example, a compression of the lattice increases the mass den-
sity, which results in a slower velocity of sound. This reduces
the Debye temperature �D, leading in some superconductors
to a decrease in Tc under an applied pressure.11

The above-mentioned mechanisms of the density depen-
dence work in pure materials. Let us mention a mechanism
specific for dirty superconductors. In metals doped by para-
magnetic impurities the dominant pressure dependence of Tc
results from the electron density dependence of the magnetic
scattering relaxation time.12

B. Plan of the paper

In Sec. II we introduce the free energy which combines
the condensation energy of Ginzburg and Landau �GL�, the
energy of electric and magnetic fields, and the deformation
energy. In Sec. III we present the set of equations derived
from the Lagrange variational principle. In Secs. IV and V
we focus on the electrostatic potential and the strain, respec-
tively. In Sec. VI we write down an effective free energy for
deformable superconductors, and Sec. VII is the summary.

II. FREE ENERGY

We start from the free energy and employ the Lagrange
variational principle to derive all stability conditions. Fol-
lowing GL, the free energy of the superconducting state

fs = fn + ����2 +
1

2
	���4 +

1

2m�
��− i
 � − e�A���2 �1�

is defined as a biquadratic function of the GL function �. The
gradient term has a form of the kinetic energy with the Cop-
per pair mass m� and charge e�=2e.

The GL free energy is added to the free energy of the
normal state

fn = f0 + e��n − nlat� −
1

2
�����2 +

1

2
0
�� � A�2. �2�

The normal free energy covers the magnetic energy �last
term�, the electrostatic energy �second and third terms�, and
the local free energy f0.

The local free energy f0 is a function of the electron den-
sity n, deviations of atomic positions u, and temperature T,

f0 = f0�n,u,T� . �3�

According to the theory of elasticity,13 the free energy does
not depend directly on the vector u but only on its deriva-
tives expressed via the strain tensor

uij =
1

2
� �ui

�rj
+

�uj

�ri
� . �4�

There is no term explicitly attributed to the interaction
between the deformation u and the superconducting conden-
sate; however, this interaction has a number of hidden con-
tributions. First, it is mediated by the electrostatic force. Sec-
ond, the GL parameters � ,	 ,m� depend on the density of
electrons and on the deformation u.

For simplicity we will assume that the GL parameters �,
	, and m� depend on the strain exclusively via the crystal
density nlat. In other words we neglect effects of shear defor-
mations which break the isotropy of the system. The reader
interested in the anisotropic interaction is referred to papers
by Miranović et al.5 or Cano et al.6

In general, the lattice charge density in deformed crystal
is a nontrivial problem since nlat describes the ionic charge
and the deformation can change ionicity. We will assume that
the ionicity is constant so that the charge is given by the
divergence of atomic shifts

nlat = n0�1 − �� · u�� = n0�1 − u11 − u22 − u33� . �5�

Now all components of the free energy and material de-
pendencies are specified. It remains to derive the equations
for the individual fields. To this end we employ the Lagrange
variational principle.

III. LAGRANGE VARIATIONAL CONDITIONS

The free energy fs depends on the following independent
variable fields: the vector potential A, the complex GL func-
tion �, the electrostatic potential �, the electron density n,
and the vector of atomic shifts u. The corresponding varia-
tions are well established,14–16 therefore, we present the re-
sulting equations without derivations. We note that the vector
and scalar potentials are in the Coulomb gauge, �� ·A�=0.

The A variation yields the Ampere law,

�2A = − 
0
e�

m�
Re �̄�− i
 � − e�A�� . �6�

The �̄ variation results in the GL equation,

�− i
 � − e�A�
1

2m�
�− i
 � − e�A�� + �� + 	���2� = 0.

�7�

The less usual form of the kinetic energy is a Hermitian
operator also for an inhomogeneous mass m�. The dependen-
cies of the material parameters �, 	, and m� on the lattice
deformation u, and the electron density n are rather weak but
essential for specific problems such as the vortex pinning by
the strain around dislocations or for the effect of the elastic
energy on the arrangement of vortices.

The � variation recovers the Poisson equation,

− ��2� = e�n − nlat� . �8�

In deriving this equation we have neglected the ionic contri-
bution to the dielectric function �, i.e., terms proportional to
�� /�nlat.
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The n variation furnishes us with the electrostatic poten-
tial known as the Bernoulli potential,

e� = −
� f0

�n
−

��

�n
���2 −

1

2

�	

�n
���4 + �̄�− i
 � − e�A�

�
1

2m�

� ln m�

�n
�̄�− i
 � − e�A�� . �9�

The density derivative of the local free energy f0 is nontrivial
only if the system is perturbed from the homogenous state.
To make �f0 /�n transparent, it is necessary to expand it in
perturbations. This rearrangement is accomplished in Sec.
IV.

The u variation gives the strain equation,

� j
� f0

�uij
= − � j

��

�uij
���2 −

1

2
� j

�	

�uij
���4

+ � je�
�nlat

�uij
+ � j�̄�− i
 � − e�A�

�
1

2m�

� ln m�

�uij
�̄�− i
 � − e�A�� . �10�

We use the Einstein summation rule for doubled indices, e.g.,
rjhjm	
 j=1

3 rjhjm. The strain �Eq. �10�� includes terms which
are so far rather symbolic. In Sec. V we express all of them
in terms of elastic moduli and forces on the crystal lattice.

IV. BERNOULLI POTENTIAL

We start with a rearrangement of the Bernoulli potential
�Eq. �9��. The first derivative of the local free energy with
respect to the electron density is the Fermi energy

� f0

�n
= EF. �11�

The Fermi energy itself depends on the electron density via
the Fermi-Dirac statistics and the exchange-correlation
potential.17 Besides, it depends on the lattice deformation via
the density of states. Setting the Fermi energy of unperturbed
system to zero, to the linear order in perturbations it reads

EF =
�EF

�n
�n +

�EF

�uij
uij . �12�

The Fermi energy EF depends on the lattice deformation
via changes in the electron band structure. Within the isotro-
pic approximation we assume that it is proportional to the
perturbation of the lattice density

�EF

�uij
=

�EF

�nlat

�nlat

�uij
= −

�EF

�nlat
n0� ji. �13�

Using approximation �13� in relation �11� we obtain �uii
	u11+u22+u33�

� f0

�n
=

�EF

�n
�n −

�EF

�nlat
n0uii. �14�

The first term represents the Thomas-Fermi screening, and
the second one results from the charge inhomogeneity of the
deformed ionic lattice.

A. Thomas-Fermi screening

Now we express the change of the Fermi energy in terms
of the electrostatic potential �. To this end we use the Pois-
son equation �8� in the form

− ��2� = e��n + n0uii� . �15�

Substituting �n from Eq. �15� in the Fermi energy �Eq. �14��
we arrive at

� f0

�n
= −

�EF

�n

�

e
�2� − � �EF

�n
+

�EF

�nlat
�n0uii. �16�

The first term on the right-hand side can be expressed via
the Thomas-Fermi screening length

�EF

�n

�

e2 = �TF
2 . �17�

The Bernoulli potential �Eq. �9�� now reads

e� − �TF
2 �2e� = � �EF

�n
+

�EF

�nlat
�n0uii −

��

�n
���2 −

1

2

�	

�n
���4

+ �̄�− i
 � − e�A�
1

2m�

� ln m�

�n

��− i
 � − e�A�� . �18�

The electrostatic potential � resulting from Eq. �18� has
two characteristic components, the free and the enforced one.
The free solution is nonzero only near the surface decaying
into the bulk on the Thomas-Fermi screening length �TF.
This solution is determined by a surface condition. We note
that the free solution plays an important role in the surface
dipole.16 Here we focus on the bulk properties, therefore, we
ignore the free solution.

Second, there is an electrostatic potential enforced by in-
homogeneities in the superconducting density ���2 and the
lattice deformation as given by the right-hand side of Eq.
�18�. We keep the name Bernoulli potential for this compo-
nent.

Two simplifications of the Bernoulli potential are at hand.
First, we can neglect �TF

2 �2e�. This is because gradients of
the GL function and the corresponding potential are on the
scale of the GL coherence length or the London penetration,
which are both much larger than the Thomas-Fermi screen-
ing length �TF. Second, the logarithmic derivative of the
Cooper pair mass m� is a small quantity and we can neglect
its gradient. Therefore,

e� = � �EF

�n
+

�EF

�nlat
�n0uii −

��

�n
���2 −

1

2

�	

�n
���4

+
� ln m�

�n
�̄�− i
 � − e�A�

1

2m�
�− i
 � − e�A�� .

�19�

Note that neglecting the term �2� in the Poisson equation
�15� implies the quasineutral approximation n=nlat. In this
sense we can work with the nonzero electrostatic potential
�Eq. �19�� while using the local charge neutrality for pertur-
bations of material parameters.
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The Bernoulli potential �Eq. �19�� extends previous
results16,18 having two additional contributions. First, the
charge of the deformed ion lattice is represented by the term
�n0uii=n0�� ·u�. Second, the effect of the charge perturba-
tion on the Cooper pair mass m� is included.

B. From “nonlocal” to nonlinear corrections

The GL equation �7� multiplied by the conjugate GL func-

tion �̄,

�̄�− i
 � − e�A�
1

2m�
�− i
 � − e�A�� = − ����2 − 	���4,

�20�

couples the gradient term on the left-hand side with the non-
linear one 	���4. This gives us the freedom to make the Ber-
noulli potential either a linear or a local function of the su-
perconducting density ���2. We prefer the local but nonlinear
form,

e� = � �EF

�n
+

�EF

�nlat
�n0uii − � ��

�n
+ �

� ln m�

�n
����2

−
1

2
� �	

�n
+ 2	

� ln m�

�n
����4. �21�

Apparently, there are a number of possible additional re-
arrangements of the Bernoulli potential. Since we study the
interaction between the superconducting condensate and the
lattice deformation mediated by the Bernoulli potential, form
�21� is optimal as it is expressed in terms of uii and ���2.

V. STRAIN EQUATION

The strain equation �10� is rather involved as it contains
gradients of derivatives with respect to tensor components of
the strain. The major simplification follows from the assump-
tion that all material parameters related to the superconduct-
ing phase depend on the strain exclusively via the lattice
density nlat, i.e.,

��

�uij
= −

��

�nlat
n0� ji �22�

and similar for 	 and m�. Within this isotropic approximation
the strain equation can be rearranged in a manner which in
many steps parallels the treatment of the Fermi energy in the
previous section.

A. Stress

The stress tensor has a general form of

pji = � jilkukl. �23�

The moduli matrix � has 81 elements, but only 27 of them
are independent.13

Now we express the moduli tensor � in terms of the free
energy f . We start with the strain derivative of the local free
energy

� f0

�uij
=

�2f0

�uij � ukl
ukl +

�2f0

�uij � n
�n , �24�

which we have expanded in perturbations. The second term
of expansion �24� can be expressed with the help of the al-
ready specified strain derivative of the Fermi energy

�2f0

�uij � n
=

�EF

�uij
= −

�EF

�nlat
n0� ji. �25�

Finally we use the Poisson equation �15� to eliminate the
perturbation of the electron density �n from the stress,

� f0

�uij
=

�2f0

�uij � ukl
ukl + � jiukk

�EF

�nlat
n0

2. �26�

We have neglected the term � ji
�EF

�nlat
n0

�0

e �2� because it is pro-
portional to �TF

2 �2�.
An additional contribution to the stress results from the

Coulomb interaction of the ionic lattice with itself. To make
it explicit, we have to rearrange the electrostatic term of the
strain equation �10� with the help of the Bernoulli potential
�Eq. �21��

e�
�nlat

�uij
= − � jin0e�

= − � jin0� �EF

�n
+

�EF

�nlat
�n0uii + � jin0� ��

�n
+ �

� ln m�

�n
�

����2 + � jin0
1

2
� �	

�n
+ 2	

� ln m�

�n
����4. �27�

The first term represents the Coulomb interaction of the lat-
tice with itself. Other terms represent the interaction of the
lattice with the superconducting condensate.

The stress tensor collects all contributions to the strain
equation �10� which are linear in the strain u. The moduli
matrix, thus, reads

� jilk =
�2f0

�uij � ukl
+ � ji�lk�2

�EF

�nlat
+

�EF

�n
�n0

2. �28�

Here the second term arises from the increase in the electron
liquid energy under a volume compression.

B. Deforming force

In terms of the stress equation �23� the strain equation
�10� reads

� jpji = Fi, �29�

where

Fi = � j�� jin0� ��

�n
+ �

� ln m�

�n
� −

��

�uij
����2

+ � j�� jin0
1

2
� �	

�n
+ 2	

� ln m�

�n
� −

1

2

�	

�uij
����4

+ � j
� ln m�

�uij
�̄�− i
 � − e�A�

1

2m�
�̄�− i
 � − e�A��

�30�
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is the force �per unit volume� deforming the crystal. We have
neglected the gradient of � ln m� /�uij.

In the isotropic approximations �22� the deforming force
�Eq. �30�� simplifies to a gradient

Fi = − n0�iU �31�

of the effective potential

U = − � ��

�n
+

��

�nlat
+ �

� ln m�

�n
+ �

� ln m�

�nlat
����2

−
1

2
� �	

�n
+

�	

�nlat
+ 2	

� ln m�

�n
+ 2	

� ln m�

�nlat
����4.

�32�

We have used Eq. �20� to replace the gradient term of Eq.
�30� by the nonlinear one.

As one can see, the force is given by the biquadratic ef-
fective potential with two material parameters,

a =
��

�nlat
+

��

�n
+ �

� ln m�

�nlat
+ �

� ln m�

�n
,

b =
�	

�nlat
+

�	

�n
+ 2	

� ln m�

�nlat
+ 2	

� ln m�

�n
. �33�

In both terms the derivatives enter in the same way as if one
takes the volume or density derivative assuming the strict
local charge neutrality. For lead with a constant Cooper pair
mass m�, parameters a and b are derived in the Appendix.

C. Isotropic model

The simplest and mostly used isotropic model uses only
two elastic moduli. The bulk modulus K measures changes in
the specific volume, and shear modulus 
 is the only coeffi-
cient of all volume-keeping deformations. For the isotropic
system the strain equation �29� simplifies to13

�K +
4

3

� � �� · u� − 
 � � � � u = F , �34�

where the force acting on a unit volume of the lattice is given
by the gradient as

F = a � ���2 +
1

2
b � ���4. �35�

Together with Eq. �33� this is our final result for the strain
equation.

VI. EFFECTIVE FREE ENERGY

For studies of the lattice deformations it is not necessary
to evaluate the electrostatic potential. In this case one can use
a simplified free energy

fs� = ����2 +
1

2
	���4 +

1

2m�
��− i
 � − e�A���2 +

1

2
0
�� � A�2

+
1

2
�ijkluijukl − auii���2 −

1

2
buii���4. �36�

This free energy depends on the vector potential A, the GL

function �, and the displacement u. All material parameters
�, 	, m�, �, a, and b are now constant in space and do not
undergo variations.

By the Lagrange variation in the free energy fs� with re-
spect to the vector potential A one recovers the Ampere law
�Eq. �6��. The variation in fs� with respect to the displacement
u yields the strain equation �29� with the force �Eq. �35��.

The effective free energy fs� is not exactly equivalent to
the full free energy fs, however. By the variation in fs� with

respect to the GL function �̄ one arrives at the GL equation

1

2m�
�− i
 � − e�A�2� + �� − auii�� + �	 − buii����2� = 0.

�37�

Unlike the full GL equation �7�, here the strain effect on the
Copper pair mass m� is absent. It is mimicked by the m� part
of the strain effect on the effective potential �see a and b as
given by Eq. �33��.

VII. SUMMARY

Starting from the free energy of the GL type we have
derived the force which deforms the crystal lattice in the
presence of the inhomogeneous superconducting condensate.
Neglecting terms proportional to the square of the small
Thomas-Fermi screening length, we have rearranged the de-
forming force into the gradient of the biquadratic function of
the GL function.

Although we took into account perturbations of the charge
neutrality and included the electrostatic potential, our result
has confirmed that the assumption of the strict local charge
neutrality can be applied for the evaluation of the force de-
forming the lattice.

Based on our results, we have proposed an effective free
energy which is simpler in being independent of the electro-
static potential and the density of normal electrons. More-
over, all its field variables are explicit so that there are no
hidden interaction mechanisms. In particular, it has no strain
effect on the Copper pair mass m�. Contributions of these
eliminated variables and dependencies are covered by the
effective local but nonlinear interaction.
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APPENDIX: INTERACTION PARAMETERS

Here we derive the interaction parameters a and b for
lead. For simplicity we treat lead as the nearly free-electron
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metal; i.e., we assume that the lead band structure does not
change with the deformation. This implies that the density of
states does not depend on the lattice density; therefore,

��

�nlat
= 0. �A1�

For the free-electron approximation the Sommerfeld � de-
pends on the electron density as19

� = ��

3
�2/3 kB

2


2mn1/3. �A2�

In the free-electron approximation and a pure supercon-
ductor, the Cooper pair mass is twice the electron mass, m�

=2m; therefore, it is independent of electron and lattice den-
sities

� ln m�

� ln nlat
=

� ln m

� ln nlat
= 0 �A3�

and

� ln m�

� ln n
=

� ln m

� ln n
= 0. �A4�

These derivatives imply that the interaction parameters a and
b from Eq. �33� depend exclusively on the density deriva-
tives of GL parameters � and 	.

The constant mass m also simplifies the density deriva-
tives of the Sommerfeld �

� ln �

� ln nlat
= 0 �A5�

and

� ln �

� ln n
=

1

3
. �A6�

A simple estimate of GL parameters follows from the
Gorter-Casimir two-fluid model as

� =
�

2n
�T2 − Tc

2� �A7�

and

	 =
�T2

4n2 . �A8�

We put the actual temperature T equal to the critical tempera-
ture Tc after performing derivatives.

From relation �A7� it follows that

��

�n
= −

�Tc
2

n2

� ln Tc

� ln n
�A9�

and

��

�nlat
= −

�Tc
2

n2

� ln Tc

� ln nlat
, �A10�

where we have used the neutrality n=nlat, again after per-
forming derivatives. From relation �A8� it follows that

�	

�n
= −

�Tc
2

4n3 �2 −
� ln �

� ln n
� = −

5�Tc
2

12n3 , �A11�

where we have used Eq. �A6�. We also see that 	 does not
depend on the lattice density; i.e.,

�	

�nlat
= 0. �A12�

To complete the estimate we need the density derivatives
of the critical temperature. The derivative with respect to the
electron density we evaluate from the BCS formula

Tc = 0.85�De−1/VN0, �A13�

where the Debye temperature �D and the BCS interaction V
are approximately independent from the electron density

� ln Tc

� ln n
=

1

VN0

� ln N0

� ln n
=

1

3
ln

0.85�D

Tc
. �A14�

We have used that the Sommerfeld � is proportional to the
density of states N0 so that

� ln N0

� ln n = � ln �
� ln n = 1

3 .
The change of the critical temperature in lead with com-

pression has been experimentally established by Hake and
Mapother20 from the pressure effect on the critical magnetic
field. They provide the change with the volume �

� ln Tc

� ln �
= −

� ln Tc

� ln n
−

� ln Tc

� ln nlat
= 2.89. �A15�

The remaining material parameters of lead are Tc
=7.2 K, �D=105 K, �=163 Jm−3 K−2, and n
=13.21028 m−3. From Eq. �A9� we thus obtain

n
��

�n
= − 3.3510−7 eV, �A16�

while from Eq. �A10� it follows that

n
��

�nlat
= 7.3410−7 eV. �A17�

Finally, Eq. �A11� yields

n2�	

�n
= − 3.3310−7 eV. �A18�

We have scaled all quantities with the density so that one can
compare them with the condensation energy per Cooper pair
�Tc

2

2n =1.9910−7 eV. On this scale the resulting interaction pa-
rameters are

na = 3.9910−7 eV,

n2b = − 3.3310−7 eV. �A19�
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